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1  | INTRODUC TION

The distribution of genetic variation within and among individuals 
is crucial to understanding the organization of biological diversity 
and its underlying causes. Across the genome, variation in mu‐
tational age, the effects of different evolutionary processes and 
the influence of historical events can result in different classes 
of genetic variants characterized by their relative frequency in a 
given population (Griffiths & Tavaré, 1999; Kimura & Ohta, 1973; 
Mathieson & McVean, 2014; Slatkin, 1985). An excess of com‐
mon alleles may reflect the signature of population bottlenecks 
(Marth, Czabarka, Murvai, & Sherry, 2004), purifying selection 
(Fay, Wyckoff, & Wu, 2001) or the absence of population subdi‐
vision (Pritchard, Stephens, & Donnelly, 2000). Alternatively, high 
frequencies of rare alleles can provide evidence of population ex‐
pansion (Marth et al., 2004), detailed information on mutation rates 
and gene flow (Slatkin, 1985), and reveal geographically localized 

population subdivision (Barton & Slatkin, 1986; Gompert et al., 
2014).

Because the distribution of allele frequencies across sites (also 
known as the site frequency spectrum, or SFS) reflects the unique 
combination of these varied factors, downstream analyses are sen‐
sitive to the influence of sampling methodologies that alter the SFS. 
Yet despite the explosive recent growth in population genetics pro‐
vided by the advent of affordable reduced‐representation genome 
sequencing for nonmodel organisms, there remain significant gaps 
in our knowledge of how population genetic inference is affected 
by data collection biases and filtering steps that preferentially shape 
the SFS.

These biases may originate either in wet lab or bioinformatic 
treatments. Prior to sequencing, the SFS may be shaped by ascer‐
tainment bias in library preparation: restriction site‐associated DNA 
sequencing (RADseq)‐style methods introduce genealogical biases 
(Arnold, Corbett‐Detig, Hartl, & Bomblies, 2013) and nonrandom 
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patterns of missing data (Gautier et al., 2012) due to reliance on 
the presence of restriction cut sites; hybridization capture with ul‐
traconserved element (UCE) probe sets necessarily involves tar‐
geting sites that are highly conserved across evolutionarily distant 
taxa (Faircloth et al., 2012); and single nucleotide polymorphism 
(SNP) arrays (or “chips”) explicitly screen for variation at a particu‐
lar frequency cutoff. During sequencing itself, relatively high error 
rates are accepted in individual reads, under the assumption they 
will be corrected during bioinformatic processing steps (Nielsen, 
Korneliussen, Albrechtsen, Li, & Wang, 2012). However, the absence 
of standard bioinformatic pipelines in ecology and evolutionary biol‐
ogy is itself a source of uncertainty (Shafer et al., 2017) because spe‐
cific methodologies and parameter choices may dramatically affect 
the composition of data matrices.

For organisms lacking a suitable reference genome, de novo se‐
quence assemblies may introduce substantial errors that affect both 
the SFS and inference of population genetic structure (Shafer et 
al., 2017). During read‐mapping, SNP variation can result in higher 
rates of successful alignments in reads sharing the reference allele 
(Degner et al., 2009). Parameters used during variant detection can 
also play a significant role in determining the number and distribu‐
tion of SNPs (Nielsen et al., 2012), the most frequently used marker 
type in modern population genetics. In particular, minor allele fre‐
quency (MAF) thresholds directly influence the SFS by imposing a 
cutoff on the minimum allele frequency allowed to incorporate a 
specific genetic variant. However, despite its potential importance, 
the two most popular comprehensive bioinformatic pipelines for 
RADseq data alternatively include (Catchen, Hohenlohe, Bassham, 
Amores, & Cresko, 2013) or exclude (Eaton, 2014) the option to set 
MAF thresholds during variant calling, with the result that among 
empirical studies MAF thresholds are only sometimes reported (e.g., 
Winger, 2017, Blanco‐Bercial & Bucklin, 2016).

One potential consequence of ambiguous MAF choice is vari‐
ation in the ability to detect population subdivision (or structure), 
a fundamental goal of many population genetic studies. Previous 
empirical work suggests analyses of population structure are sensi‐
tive to filtering by allele frequency class. For example, estimates of 
Wright's fixation index FST—commonly employed to quantify pop‐
ulation subdivision—are strongly restricted by the site frequency 
spectrum	 (Jakobsson,	 Edge,	 &	 Rosenberg,	 2013).	 Similarly,	 stud‐
ies using more geographically explicit test statistics (Mathieson & 
McVean, 2012) and/or clustering methods (Gompert et al., 2014; De 
La Cruz & Raska, 2014) inferred significantly different patterns and 
levels of population genetic structure when alternately using only 
common and rare variants. These results highlight the need for a 
detailed investigation of the behaviour of these methods using com‐
monly applied MAF filters.

Clustering methods are particularly widespread in population ge‐
netic studies of nonmodel organisms where researchers generally lack 
a priori knowledge of population structure. They generally fall into one 
of two categories: model‐based (or parametric) approaches and non‐
paramatric approaches. Model‐based methods, exemplified by the in‐
fluential program structure (Pritchard et al., 2000; Falush, Stephens, & 

Pritchard, 2003), typically assume hypothetical K populations charac‐
terized by a set of alleles with frequency p at locus l, and seek to prob‐
abilistically assign individuals to each of these populations given their 
genotypes. When allowing for admixture, an additional parameter Q 
models the proportion of each individual's genome that originated 
from a given population. While other programs differ from structure 
in using variational inference (faststructure: Raj, Stephens, & Pritchard, 
2014) or a maximum‐likelihood framework (admixture: Alexander, 
Novembre, & Lange, 2009; frappe: Tang, Coram, Wang, Zhu, & Risch, 
2006), they are united in proposing an explicit causal model for input 
data, assuming linkage equilibrium between loci and Hardy–Weinberg 
equilibrium between alleles. In contrast, nonparametric methods 
such as principal components (PCA) analysis and K‐means clustering 
(Jombart,	Devillard,	&	Balloux,	2010;	Novembre	et	al.,	2008)	first	re‐
duce the dimensionality of an allele frequency matrix and then seek 
to identify groups of individuals that minimize an objective function 
without explicitly modelling the attributes of genetic data.

Because of these differences, parametric and nonparametric ap‐
proaches may show different sensitivities to SFS generated through 
biased data collection methods. It is possible that these sensitivities 
also reflect the influence of the type of data sets available during 
each program's initial development: for example, as structure's 
underlying algorithm was tested prior to widespread adoption of 
high‐throughput sequencing methods and was initially applied to 
microsatellite data screened for appropriate frequency distributions 
(Li, Korol, Fahima, Beiles, & Nevo, 2002; Pritchard et al., 2000), the 
characteristics of unfiltered modern SNP data sets may present un‐
anticipated challenges to accurate population genetic inference.

Here, we build on previous studies of the relationship between 
population subdivision and allele frequencies (Gompert et al., 2014; 
Jakobsson	 et	 al.,	 2013;	Mathieseon	 &	 McVean,	 2012;	 Mathieson	
& McVean, 2014) to systematically assess the influence of MAF 
thresholds on inference of population structure. We evaluate the 
ability of model‐based and nonparametric clustering methods to de‐
scribe population structure in both simulated and empirical genomic 
data sets using diallelic SNPs and find that structure is confounded 
by singletons and that both approaches are sensitive to variation 
in MAF thresholds. We propose a simple hypothesis to explain this 
behaviour and recommend a set of best practices for researchers 
seeking to describe population structure using multilocus data sets.

2  | METHODS

2.1 | Simulated data

We simulated genome‐wide SNP data sets under a custom demo‐
graphic model in fastsimcoal2 version 2.5.2.21 (Excoffier, Dupanloup, 
Huerta‐Sánchez, Sousa, & Foll, 2013) in order to assess the impacts 
of MAF filtering on population structure inference in the absence 
of sequencing or assembly error. Model parameters were chosen to 
reflect a plausible demographic history for our empirical case (see 
below), with one population experiencing successive splits 60,000 
and 40,000 generations in the past after which all populations 
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increase in size exponentially, reaching a final effectice population 
size Ne of 50,000 for the “outgroup” lineage and 500,000 for the re‐
maining populations (Figure 1a). Migration is allowed among all pop‐
ulations after the final divergence event with a rate of m = 5 × 10−5. 
We included a mutation rate parameter of 2 × 10−6 in simulated 
data—equivalent to selecting a single SNP from a 200‐bp region in 
an organism with an average genome‐wide mutation rate of 1 × 10−8 
(see fastsimcoal2 user manual ). Missing data—a common feature of re‐
duced‐representation library SNP data sets—were simulated by randomly 
dropping 25% of the alleles at each simulated locus.

We generated 10 independent simulations using the same start‐
ing parameter values and replicated analyses 10 times for each data 
set. Each simulation was initialized with 5,000 loci across 10 individ‐
uals in each of the three populations. After converting fastsimcoal2 
output to structure's input file format, we used a custom R script to 
apply the following MAF cutoffs to all populations in our simulated 
data: 1/60, 2/60, 3/60, 4/60, 5/60, 8/60, 11/60 and 15/60.

To test whether variation in inferred admixture levels was caused 
by MAF thresholds specifically rather than a drop in the total size of 
the data matrix after filtering, we reran the above simulations but 
initialized with 40,000 loci and then randomly down‐sampled all 
alignments to 1,000 sites after applying MAF cutoffs.

2.2 | Empirical data

We collected genome‐wide SNP data from 40 individuals of the 
widespread North American passerine Regulus satrapa, the golden 
crowned kinglet. Our geographical sampling aimed to represent 
three areas of the species’ breeding range that a previous study 
with mitochondrial DNA (mtDNA) suggested were distinct popula‐
tions	(J.	Klicka,	unpublished	data):	subspecies	satrapa in the Eastern 
US/Canada; subspecies olivaceous/apache in the coastal and Rocky 
Mountains US/Canada, respectively; and subspecies azteca in the 
Sierra Madre del Sur and Transvolcanic Belt of Mexico (Figure 1b). 
We extracted whole genomic DNA using Qiagen DNEasy extraction 

kits and prepared reduced‐representation libraries via the double di‐
gest (dd)RADseq protocol (Peterson, Weber, Kay, Fisher, & Hoekstra, 
2012) using the digestion enzymes Sbf1 and Msp1 and a size‐selec‐
tion window of 415–515 bp. We sequenced the resulting libraries for 
50‐bp single‐end reads on an Illumina HiSeq 2500 sequencer.

We assembled reads into sequence alignments de novo using 
the program ipyrad version 0.7.11 (https://github.com/dereneaton/
ipyrad). We set a similarity threshold of 0.88 for clustering reads 
within and between individuals, a minimum coverage depth of 6 
per individual, and a maximum depth of 10,000. We filtered out loci 
sharing a heterozygous site in 50% of samples as probable clusters 
of paralogues with a fixed difference. (We define “locus” in the con‐
text of ddRADseq data as a cluster of sequence reads putatively rep‐
resenting the same 50‐bp region downstream of an Sbf1 cut site.) 
Because missing data can have a strong influence on population 
genetic inference (Arnold et al., 2013, Gautier et al., 2013) and pre‐
liminary exploration suggested anomalous clustering behaviour, we 
removed seven individuals from our data set prior to all downstream 
analysis. Of these final 33 samples, we required each locus to be se‐
quenced in at least half of samples and randomly selected one SNP 
per locus. We then applied the same set of MAF cutoffs as used in 
our simulation study to all populations (1/60 to 15/60).

2.3 | Population structure analyses

We ran 10 replicate clustering analyses using structure version 
2.3.4 for all MAF filters of simulated (n = 80) and empirical data 
(n = 8) using the correlated allele frequency model with admixture 
for 250,000 generations each, setting K = 3 and discarding the ini‐
tial 10,000 generations as burn‐in. All runs were initialized using a 
random seed value drawn from a uniform distribution with range 
0–10,000. No prior population assignment information was included 
in the model. All other settings were left at default values.

PCA, K‐means clustering and discriminant analysis of principal 
components (DAPC) were conducted using the R package adegenet 

F I G U R E  1   (a) The demographic model used in simulating SNP data sets. (b) Sampling localities and sizes for Regulus satrapa, with a priori 
population assignments
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version	2.1.0	(Jombart	et	al.,	2010)	and	the	MAF‐filtered	structure files 
as input. Missing data were replaced with the mean values across the 
full sample before running PCAs. All PCs were retained for K‐means 
clustering, as recommended by the adegenet documentation (https://
github.com/thibautjombart/adegenet/wiki/Tutorials), which we per‐
formed with a fixed value of K = 3 on the basis of the apparent level 
of	subdivision	in	preliminary	mtDNA	data	(J.	Klicka	et	al.,	unpublished	
data). DAPCs were initialized using the K‐means clustering solution and 
tested by training the model on half the individuals in each population, 
then predicting the population assignment of the remaining individu‐
als. We retained three PCs and two discriminant axes after manually 
examining several runs with both simulated and empirical data. PCA 
and K‐means analyses were repeated 10 times per input data set, and 
DAPC cross validations were repeated 10 times per K‐means replicate.

In practice most clustering solutions are assessed visually by 
comparing bar plots of structure output or scatter plots of PCs 1 
and 2. To quantitatively compare clustering results across methods 
and MAF cutoffs, we estimated two summary statistics: the propor‐
tion of correct population assignments, and the ratio of distances 
between individuals within populations to those between all individ‐
uals (we refer to this as “PCST” in analogy to FST and �ST). The propor‐
tion of correct population assignments was estimated by assigning 
each individual to a single cluster (for structure results individuals 
were assigned to the cluster with the highest q value), swapping clus‐
ter labels to account for stochastic label switching during inference, 
and comparing inferred and true population assignments. Within‐to‐
total population distance ratios were calculated as:

where k is the population index, i and j are the indices of indi‐
viduals, and d̄ is the mean Euclidean distance between individuals 
in a k‐dimensional space described by the first k principal compo‐
nents or the columns of the q matrix returned by structure. More 
simply, this ratio is the average distance between individuals in the 
same population over the average distance between all individuals. 
High values indicate that inferred clusters are discrete, while low 
values indicate that clusters overlap—reflecting either uncertainty 
in individual assignments or admixture among populations. We fit‐
ted linear mixed models in R version 3.5.1 (R Core Team, 2018) to 
evaluate the relationship between MAF cutoffs and the values of 
assignment accuracy and PCST, using simulation number as a random 
effect to account for the nonindependence of replicated analyses on 
the same data set. We visualized results using ggplot2 version 3.1.0 
(Wickham, 2016) and ggridges version 0.5.1 (Wilke, 2018).

3  | RESULTS

3.1 | Simulations and sequence assembly

Following MAF filtering, our simulated data sets retained an av‐
erage range of 3,942 (for MAF = 1) to 242 (for MAF = 15) loci. 
Constant‐length data sets were always subsampled to 1,000 bp. 
For our Regulus satrapa ddRAD libraries, Illumina sequencing re‐
turned an average of 781,011 quality‐filtered reads per sample. 
Clustering within individuals identified 35,722 putative loci per 
sample, with an average depth of coverage of 22×. After clustering 
across individuals and applying paralogue and depth‐of‐coverage 
filters, we retained an average of 4,286 loci per sample. Prior to 
applying MAF filters and removing individuals for excess missing 
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F I G U R E  2   The influence of minor 
allele count on structure's assignment 
accuracy under the admixture model, and 
PCST for simulated and empirical data sets
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data, our alignment included 3,898 unlinked diallelic SNPs that 
were sequenced in at least 30 of the original 40 samples. Our 
final MAF‐filtered data sets ranged from 3,419 (MAF = 1) to 431 
(MAF = 20) loci.

3.2 | Parametric clustering

The ability to detect population subdivision in both simulated and 
empirical data sets varied widely across MAF thresholds using the 
model‐based method structure (Figure 2). In both constant‐ and 
variable‐length data sets, including singletons caused structure 
to assign all individuals to the same majority ancestry cluster. For 
variable‐length simulated data sets, after excluding alignments with 
singletons, higher MAF thresholds are also associated with lower 
population discrimination (PCST ~ minor_allele_count * sim_num; 
p	<	2e−16,	R2 = 0.207, df = 696; Supporting Information Figure S1) 
and assignment accuracy (accuracy ~minor_allele_count * sim_num; 
p	<	2e−16,	R2 = 0.195, df = 696; Supporting Information Figure S1). 
The association between high MAF cutoffs and population discrimi‐
nation is reversed in constant‐length data sets—more stringently 
filtered data sets infer more discrete clusters—although the effect 
is much weaker (PCST ~ minor_allele_count * sim_num: p	<	2e−16,	
R2 = 0.098, df = 696; accuracy ~minor_allele_count * sim_num: 
p < 0.005, R2 = 0.01, df = 696; Supporting Information Figures S1 
and S2).

3.3 | Nonparametric clustering

In contrast to structure, both K‐means clustering accuracy and 
PCST were robust to inclusion of singletons. However, both meas‐
ures were highly sensitive to MAF thresholds in simulated data 

(Figure 3). Both PCST and K‐means assignment accuracy decline as 
the MAF threshold is increased (PCST ~ minor_allele_count * sim_
num; p	<	2e−16,	R2 = 0.642, df = 796; kmeans_accuracy ~minor_al‐
lele_count * sim_num; p	<	2e−16,	R2 = 0.409, df = 796; Supporting 
Information Figure S3). As with structure these relationships are 
reversed but weaker when alignment length is held constant (PCST 
~ minor_allele_count * sim_num; p	<	2e−16,	R2 = 0.246, df = 796; 
kmeans_accuracy ~minor_allele_count * sim_num; p	<	2e−16,	
R2 = 0.116, df = 796; Supporting Information Figure S3), although 
the relationship remains negative across MAF cutoffs in the range 
of 1/60–3/60 (Supporting Information Figure S4). For empirical 
data, both methods achieved near‐perfect assignment accuracy 
under all MAF cutoffs (Figure 3).

4  | DISCUSSION

4.1 | Inference of population structure is sensitive 
to MAF

Our results demonstrate that inference of population structure can 
be strongly influenced by choice of MAF threshold with both model‐
based and multivariate approaches. structure fails to detect even 
moderate population subdivision (FST ≅ 0.05) when singletons are 
included in the alignment, and both methods generally infer increas‐
ing levels of admixture as the minimum MAF of sites included in the 
alignment is increased. These trends do not occur when alignment 
length is held constant, suggesting that most of the effect is driven 
by a drop in the total size of the data matrix after filtering by MAF. In 
practice this will occur in most empirical data sets when genotypes 
are estimated from sequencing data. For chip‐based approaches 
in which SNPs are first screened for variation at some cutoff, our 

F I G U R E  3   The influence of minor 
allele count K‐means assignment and PCST 
for simulated and empirical data sets. On 
PCA plots, x‐axis values are PC1 and y‐
axis values are PC2
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analysis suggests that clustering results should be relatively robust 
to implicit MAF cutoffs applied during chip design. This is a particu‐
larly important concern for ancient DNA studies, which frequently 
collect data with these methods (e.g., Rasmussen et al., 2011).

Two factors may explain the pattern of increased admixture in 
more stringently filtered data sets: variation in the total size of the 
data matrix, and the distribution of mutations on a coalescent tree. 
In simulated data sets of varying size (as in nearly all empirical cases), 
increasing the MAF cutoff decreases the total size of the data ma‐
trix and leads to much higher estimates of individual admixture. This 
is in part an interpretive issue, as the strong effect of the size of 
the data matrix suggests that the high q‐matrix values reflect uncer‐
tainty in individual assignments rather than higher admixture levels. 
However, because parametric approaches are typically interpreted 
in light of their generative model, many users are likely to see this 
pattern as evidence of higher gene flow.

A secondary cause of increased admixture in more stringently 
filtered data sets is the time distribution of mutations in a coalescent 
tree. Under a standard coalescent model the expected number of 
sites with a derived allele present in i samples (si) is the total length 
of branches subtending i descendants (τi), multiplied by the expected 

number of mutations per unit time 
(

�

2

)

:

Low‐frequency alleles represent mutations that occurred on 
branches with few descendants, and these branches are typically 
found close to the present (Figure 4; see Appendix S1 for simulation 
details). They therefore contain a disproportionate amount of infor‐
mation about recent events. Removing them is similar to drawing a 

horizontal line across a coalescent tree and dropping mutations that 
occur beyond that line. In the absence of recent pulses of gene flow 
(where ancient alleles from a donor are rare in the recipient and thus 
confound the relationship between frequency and mutation age), 
this “pruning” process causes populations to appear less differenti‐
ated as the MAF threshold increases, seen in PCA output as reduced 
distance between clusters and in structure output as increased ad‐
mixture within individuals (although some would argue that this is 
simply a misinterpretation of structure's output, e.g., Lawson, van 
Dorp, & Falush, 2018). In the presence of recent pulses of gene flow, 
the true signal of admixture is instead replaced with inferred admix‐
ture (or reduced distance between clusters) as a function of a loss in 
information content, to uncertain effect.

The failure of model‐based analyses to recover a clear signal of 
population subdivision when singletons are included in the align‐
ment is more difficult to explain. The issue appears to be related 
to overfitting as a result of either a high frequency of uninforma‐
tive singletons or a high frequency of uninformative common alleles 
(Alexander & Lange, 2011). As a verbal model, this is intuitive: an al‐
lele found at a frequency of 1/2N lacks information on broader pat‐
terns of population structure because it only serves to distinguish a 
single individual from all others, while a common allele found may 
be uninformative because of the absence of differences in its fre‐
quency across populations. We hypothesize that under structure's 
algorithm, a population k1 is assigned a site frequency spectrum 
that averages out true population specific‐frequencies of common 
alleles, resulting in the broad band of majority ancestry visible in 
Figure 2. Subsequently, populations k2, …, kn are assigned site fre‐
quency spectra characterized by high frequencies of singletons or 
other rare alleles, resulting in the additional bands of minority an‐
cestry shared across all individuals. With our simulated data, rare but 
nonsingleton alleles reflect fine population structure and thus harm 
inference when excluded; with our empirical data, these rare alleles 
are uninformative and serve only as noise to obscure the common 
allele frequency distributions reflecting true population history.

This hypothesis is consistent with a pathology related to struc-
ture's inability to model mutation of modern alleles, previously 
identified as a potential obstacle to accurate inference of popula‐
tion structure under certain histories (Shringapure & Xing, 2009). 
Because structure assumes each unique allele in the input data set 
has a distinct frequency in its parent population, recent mutations 
(e.g., derived alleles) are erroneously treated as representative of a 
separate population‐specific allele frequency profile rather than as 
descendants of ancestral copies. If a sufficient number of singletons 
are present in the data set, the noise from these false allele fre‐
quency profiles may mask the signal from alleles indicative of “true” 
populations. Although most multivariate analyses were robust to 
inclusion of singletons, a similar pattern of low accuracy and popula‐
tion discrimination was observed in PCA when alignment length was 
held constant—probably because low‐frequency alleles hold less 
information about intergroup differences than moderate‐frequency 
alleles, and low‐frequency alleles will be a larger proportion of the 
total data matrix in this case.

E[si]=
�

2
E[�i] (Wakeley,2009, equation4.15)

F I G U R E  4   Time distribution of mutations with varying derived 
allele counts
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4.2 | Recommendations for setting MAF thresholds 
in population genetic studies

Our results suggest that SFS distributions that can cause struc-
ture and other model‐based programs to erroneously fail to detect 
structure that may be generated by either normal demographic 
processes (e.g., exponential population growth with relatively 
recent divergence, as in our simulated example) or assembly er‐
rors (potentially present in our empirical example, and well doc‐
umented in other de novo RADseq data sets, e.g., Shafer et al., 
2017). As a consequence, a broad set of empirical studies may 
be affected. We recommend researchers using model‐based pro‐
grams to describe population structure observe the following best 
practices: (a) duplicate analyses with nonparametric methods such 
as PCA and DAPC with cross validation; (b) exclude singletons; and 
(c) compare alignments with multiple assembly parameters. When 
seeking to exclude only singletons in alignments with missing data 
(a ubiquitous problem for reduced‐representation library prepara‐
tion methods), it is preferable to filter by the count (rather than 
frequency) of the minor allele, because variation in the amount of 
missing data across an alignment will cause a static frequency cut‐
off to remove different SFS classes at different sites. The scripts 
used to filter structure input files for this manuscript are available 
at https://github.com/cjbattey/LinckBattey2017_MAF_clustering.

4.3 | Population genetics of Regulus satrapa

Although describing population structure and phylogeographical 
patterns of the golden‐crowned kinglet was not the primarily goal 
of our study and will be elaborated on elsewhere, our data pro‐
vide novel evidence for deep splits across the range of the species, 
corroborating	 previous	 mtDNA	 evidence	 (J.	 Klicka,	 unpublished	
data). Curiously, the results of our model‐based population struc‐
ture inference suggest not only singletons but all rare alleles 
(MAF	≤	8/80)	have	a	high	noise	to	signal	ratio,	while	common	al‐
leles	 (MAF	≥	10/80)	 accurately	 reflect	 expected	 relationships.	
This pattern may be driven by either purifying selection eliminat‐
ing	 geographically	 localized	 variants	 (Jackson,	 Campos,	 &	 Zeng,	
2015; Nelson et al., 2012), a population bottleneck (Gattepaille, 
Jakobsson,	&	Blum,	2013;	Nei,	Maruyama,	&	Chakraborty,	1975),	a	
burst of recent migration following exponential population growth 
(Slatkin, 1985), or assembly artefacts resulting in a high proportion 
of uninformative/erroneous sites (Shafer et al., 2017). While all 
scenarios are probably contributing to some extent, studies of ge‐
netic variation in similar taxa provide support for post‐Pleistocene 
expansion and gene flow among populations separated by ice 
sheets (Spellman & Klicka, 2006), processes that may result in 
similar SFS distributions to our example.

4.4 | Future directions

With simulated and empirical cases reflecting similar (if noni‐
dentical) site frequency spectra, our focus was on a necessarily 

narrow range of demographic scenarios and a relatively narrow 
range of SFS distributions. Future examinations of the sensi‐
tivity of population genetic inference to MAF thresholds with 
data sets simulated under a diversity of evolutionary histories 
may shed light on the biological processes generating problem‐
atic SFS, and lead to the development of more robust model‐
based programs. While other parametric population structure 
inference programs share structure's underlying model and 
we believe the broad patterns reported here will be similarly 
reflected, differences in implementation (e.g., Markov chain 
Monte Carlo mixing) may shape specific sensitivities. A broader 
survey of model‐based population structure inference methods 
will help to clarify which approaches are best suited to next‐
generation sequencing data, and lead to the development of 
more robust software for describing the fundamental units of 
biological organization.
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